Chapter 4

Register Transfer and Microoperations

contents

* Register Transfer Language
* Register Transfer

e Bus and Memory Transfers

e Arithmetic Microoperations
e Logic Microoperations

e Shift Microoperations

e Arithmetic Logic Shift Unit

4-1 Regqister Transfer Language (RTL)

Digital System: An interconnection of hardware modules that do a
certain task on the information.

Digital Module = Registers + Operations performed on the data stored
In it.

Modules: Constructed from such digital components as registers,
decoders, and control logic.

Modules are interconnected with common data and control paths to
form a digital computer system

4-1 Register Transfer Language °°ont

« Microoperations: operations executed on data
stored in one or more registers.

* For any function of the computer, a sequence of
microoperations is used to describe it
« The result of the operation may be:

— replace the previous binary information of a
register or

— transferred to another reqister

4-1 Register Transfer Language °°ont

* The internal hardware organization of a
digital computer is defined by specifying:
* The set of registers it contains and their function

* The sequence of microoperations performed on
the binary information stored in the registers

* The control that initiates the sequence of
microoperations

4-1 Register Transfer Language c¢ont

Digital Computer =
Registers + Microoperations Hardware + Control Functions

4-1 Register Transfer Language c°ont

* Register Transfer Language (RTL) : a symbolic notation to
describe the microoperation transfers among registers

Next steps:
— Define symbols for various types of microoperations,
— Describe the hardware that implements these microoperations

4-2 Register Transfer (our first microoperation)

« Computer registers are designated by capital letters
(sometimes followed by numerals) to denote the function

of the register
* R1: processor register
MAR: Memory Address Register (holds an address for a memory unit)
PC: Program Counter
IR: Instruction Register
SR: Status Register

4-2 Register Transfer cont

* The individual flip-flops Iin an n-bit register are numbered
In sequence from 0 to n-1 (from the right position toward
the left position)

R1 76543210

Register R1 Showing individual bits

A block diagram of a register

4-2 Register Transfer cont

Other ways of drawing the block diagram of a register:

15 0
R2

Numbering of bits

15 87 0
Upper byte PC(H) PC(L) Lower byte

Partitioned into two parts

4-2 Register Transfer cont

Information transfer from one register to another is
described by a replacement operator: R2 «— R1

This statement denotes a transfer of the content of
register R1 into register R2

The transfer happens in one clock cycle
The content of the R1 (source) does not change

The content of the R2 (destination) will be lost and
replaced by the new data transferred from R1

11

4-2 Register Transfer cont

Conditional transfer occurs only under a
control condition

Representation of a (conditional) transfer
If (P=1) then R2 «— R1

A binary condition (P equalsto 0 or 1)
determines when the transfer occurs

The content of R1 Is transferred into R2
onlyifPis 1

12

4-2 Regqister Transfer cont

Block diagram:

Timing diagram

Hardware implementation of a controlled transfer: P: R2 «— R1
Control| P Load
Circuit > FiZ < Clock
n
R1
t+1
Clock
Load /—\ Synchronized

Transfer occurs here 41

with the clock

13

4-2 Register Transfer cont

Basic Symbols for Register Transfers

Symbol Description Examples
Letters & Denotes a register MAR, R2
numerals

Parenthesis ()

Denotes a part of a
register

R2(0-7), R2(L)

Arrow «— Denotes transfer of R2 — R1
Information
Comma, Separates two R2 — R1, Rl «— R2

microoperations

14

4-3 Bus and Memory Transfers

Paths must be provided to transfer information
from one register to another

A Common Bus Systemis a scheme for
transferring information between registers in a
multiple-register configuration

A bus: set of common lines, one for each bit of a
register, through which binary information is
transferred one at a time

Control signals determine which register Is
selected by the bus during each particular
register transfer

15

4-3 Bus and Memory Transfers

[Register Al |ReqgisterBl |Registerc| [Register DI

!

!

!

!

Register B

Register C

Register A

Register D

3210

3210

3210

3210

o
)]

—
0p)

——
——

3210

MUXO

— S
«— S1

3210

MUX1 |

— S
4—81

3210

MUX2

3210

MUX3 s,

} l I l, 4-Line Common Bus

16

4-3 Bus and Memory Transfers

* Bus selection : two selection lines S1 and SO are
connected to the selection inputs of all four multiplexers.

0 0 A
0 1 B
1 0 C
1 1 D

4-3 Bus and Memory Transfers

« The transfer of information from a bus into one of
many destination registers is done:

— By connecting the bus lines to the inputs of all destination
registers and then:

— activating the load control of the particular destination
register selected

BUS «C , R1 «+—BUS
* The content of register C is placed on the bus
« content of bus is loaded into register R1
* |tis equivalentto: R1 — C

18

4-3 Bus and Memory Transfers: Three-State
Bus Buffers

* A bus system can be constructed with three-state buffer

gates instead of multiplexers
* A three-state buffer is a digital circui

t that exhibits three

states: logic-0, logic-1, and high-impedance (Hi-2)

Normal input A

Control input C ——

Three-State Buffer

>Output B

19

4-3 Bus and Memory Transfers: Three-State
Bus Buffers cont

Buffer

B

il
>

®
w

Open Circuit

w
il
>
w

>
>

20

4-3 Bus and Memory Transfers: Three-State
Bus Buffers cont

- Sl 0]
Select{ s,) Bus line for bit 0
2x%4 Ag 1 1 —
Decoder 2
Enable E
3—
BO | E

Bus line with three-state
buffer (replaces MUXO in the
previous diagram) Do

4-3 Bus and Memory Transfers: Memory

Transfer
 Memory read : Transfer from memory
 Memory write : Transfer to memory

« Data being read or wrote is called a memory
word (called M)

* |tis necessary to specify the address of M when
writing /reading memory

« This Is done by enclosing the address in square
brackets following the letter M

« Example: M[0016] : the memory contents at
address 0x0016

22

4-3 Bus and Memory Transfers: Memory
Transfer cont.
« Assume that the address of a memory unit is stored in a
register called the Address Register AR
* Lets represent a Data Register with DR, then:
 Read: DR — M[AR]
« Write: M[AR] < DR

23

4-3 Bus and Memory Transfers: Memory

AR

Transfer cont.

x12

R1

100

R1<M[AR] %

R1

\Rl /
A1

x0C
XOE
x10
x12
x14
xX16
x18

66

/" N\

19

34

45

66

13

22

RAM

24

4-4 Arithmetic Microoperations

* The microoperations most often encountered In digital
computers are classified into four categories:
— Register transfer microoperations

— Arithmetic microoperations (on numeric data stored in the
registers)

— Logic microoperations (bit manipulations on non-numeric data)
— Shift microoperations

25

4-4 Arithmetic Microoperations cont

* The basic arithmetic microoperations are: addition,
subtraction, increment, decrement, and shift

« Addition Microoperation:
R3 —R1+R2
« Subtraction Microoperation:
R3 «—R1-R2 or :
R3 «R1+R2+]"*complement

26

4-4 Arithmetic Microoperations cont

* One’s Complement Microoperation:
R2 «—R2

* Two's Complement Microoperation:
R2 «—R2+1

* Increment Microoperation:
R2 «—R2+1

* Decrement Microoperation:
R2 «—R2-1

27

4-4 Arithmetic Microoperations Binary
Adder

To implement the add microoperation with hardware need
registers that hold the data and the digital component that
performs the arithmetic addition

Full-adder: digital circuit that forms the arithmetic sum of
two bits and a previous carry

Binary adder: full adder circuits connected in cascade.

Binary adder subtractor: The addition and subtraction
operation can be combined into one common circuit by
iIncluding Xor gate

28

4-4 Arithmetic Microoperations Binary Adder-
Subtractor

B, A, B, A, B, A B, A
| | | | Y
C, C, C,

l
S EEETE

Cs Ss S, Sy So

4-bit adder-subtractor

4-4 Arithmetic Microoperations Binary Adder-
Subtractor

* For unsigned numbers, this gives A— B if A=B or
the 2's complement of (B —A) IfA<B
(example: 3 -5 =-2=1110)

* For signed numbers, the result is A— B provided

that there is no overflow. (example : -3 — 5= -8)
1101

1011 +

C; 1, if overflow
1000) V=

Cyo— 0, if no overflow

Overflow detector for signed numbers

30

4-4 Arithmetic Microoperations Binary Adder-
Subtractor cont
« What is the range of unsigned numbers that can be
represented in 4 bits?

« What is the range of signed numbers that can be
represented Iin 4 bits?

* Repeat for n-bit?!

31

4-4 Arithmetic Microoperations Binary
Incrementer

* Binary Incrementer can also be implemented using a
counter

* A binary decrementer can be implemented by adding 1111
to the desired reqgister each time!

32

4-4 Arithmetic Microoperations Binary

Incrementer
As A, A, A, 1
| | | | | | | |
X Yy X Y X Y X Yy
HA HA HA HA
C T C T C T C T
(g S, S, S, So

4-bit Binary Incrementer

4-4 Arithmetic Microoperations Arithmetic
Circuit
 This circuit performs seven distinct arithmetic operations
and the basic component of it is the parallel adder

* The output of the binary adder Is calculated from the

following arithmetic sum:
+D=A+Y+C,

34

Circuit cont.

4-4 Arithmetic Microoperations Arithmetic

A3 A2 Al AO
10B;B; S; S 10B,B,S; S, 10B,B; S; S, 10B,B, S; S
WAV b
3210 S, S, 3210 S, S, 3210 S;S, 3210 S;S,

4x1 MUX 4x1 MUX 4x1 MUX 4x1 MUX Figure A
Y, X3 C Y, X, C Y, X4 C Yo Xo
FA = FA =& FA X4 FA —C,

out D D, D, Dy

4-bit Arithmetic Circuit

35

4-5 Logic Microoperations
The four basic microoperations

OR Microoperation
 Symbol: v, +

e Gate: :D—

« Example: 100110, v 1010110, = 1110110,

P+Q: R1—R2+R3, R4—R5 vR6

36

4-5 Logic Microoperations
The four basic microoperations cont

AND Microoperation
« Symbol: A

e Gate: :}

» Example: 100110, A 1010110, = 0000110,

37

4-5 Logic Microoperations
The four basic microoperations cont

Complement (NOT) Microoperation
» Symbol:

 Gate:

« Example: 1010110, = 0101001,

38

4-5 Logic Microoperations
The four basic microoperations cont

XOR (Exclusive-OR) Microoperation
« Symbol: &

« Gate:

« Example: 100110, & 1010110, = 1110000,

39

4-5 Logic Microoperations
Other Logic Microoperations

Selective-set Operation

» Used to force selected bits of a register into logic-1 by
using the OR operation

« Example: 0100, v 1000, = 1100,

/ \Loaded into a register from

In a processor register memory to perform the
selective-set operation

40

4-5 Logic Microoperations
Other Logic Microoperations cont

Selective-complement (toggling) Operation

« Used to force selected bits of a register to be complemented by
using the XOR operation

\ \

« Example: 0001, @ 1000, = 1001,

NN

IN & DrOCESSOr register Loaded into a register from
P g memory to perform the
selective-complement operation

41

4-5 Logic Microoperations
Other Logic Microoperations cont

Insert Operation
Stepl: mask the desired bits
Step2: OR them with the desired value

Example: suppose R1 =0110 1010, and we desire to replace the
leftmost 4 bits (0110) with 1001 then:

— Stepl: 0110 1010 A 0000 1111

— Step2: 0000 1010 v 1001 0000
- R1=1001 1010

42

4-5 Logic Microoperations
Other Logic Microoperations cont

NAND Microoperation

» Symbols: A and
._jO_
« Gate: T

» Example: 100110, A 1010110, = 1111001,

43

4-5 Logic Microoperations
Other Logic Microoperations cont

NOR Microoperation

» Symbols: v and

e Gate: m

» Example: 100110, v 1010110, = 0001001,

44

4-5 Logic Microoperations

Other Logic Microoperations cont

Set (Preset) Microoperation

Force all bits into 1's by ORing them with a value
In which all its bits are being assigned to logic-1

Example: 100110, v 111111, = 111111,
Clear (Reset) Microoperation

Force all bits into 0’'s by ANDIng them with a
value in which all its bits are being assigned to
logic-0

Example: 100110, A 000000, = 000000,

45

4-5 Logic Microoperations
Hardware Implementation
* The hardware implementation of logic microoperations

requires that logic gates be inserted for each bit or pair of
bits In the registers to perform the required logic function

* Most computers use only four (AND, OR, XOR, and NOT)
from which all others can be derived.

46

4-5 Logic Microoperations
Hardware Implementation cont

S
So

4x1
MUX

Figure B

Operatio
S; Sy Output n
0 0O |[E=A®B XOR
0 1 |E=AvB OR
1 O |[E=AAB AND
1 1 E=A Complem
ent

This is for one bit i

47

4-6 Shift Microoperations

Used for serial transfer of data

Also used in conjunction with arithmetic, logic,
and other data-processing operations

The contents of the register can be shifted to the
left or to the right

As being shifted, the first flip-flop receives its
binary information from the serial input

Three types of shift: Logical, Circular, and
Arithmetic

48

4-6 Shift Microoperations cont

Serial Input

A

Determines
the “shift”

type

Serial Output

Serial Output

~ Serial Input

-1 rs 2 ry o
Shift Right
-1 I3 P I Io
Shift Left

**Note that the bit ri is the bit at position (i) of the register

49

4-6 Shift Microoperations:
Logical Shifts

» Transfers 0 through the serial input

* Logical Shift Right: R1<shr R1
&Thesame
* Logical Shift Left: R2+
g %Thesame

?+—— Iy < Iy ry ry o |«<—0O

Logical Shift Left

4-6 Shift Microoperations:
Circular Shifts (Rotate Operation)

 Circulates the bits of the register around
the two ends without loss of information

» Circular Shift Right: Ri«<cir R1
%Thesame
 Circular Shift Left: RZ@@% N

-1 < I's Iy Iy o |«

Circular Shift Left

4-6 Shift Microoperations
Arithmetic Shifts

Shifts a signhed binary number to the left or right

An arithmetic shift-left multiplies a signed binary number by 2:
ashl (00100): 01000

An arithmetic shift-right divides the number by 2
ashr (00100) : 00010

An overflow may occur in arithmetic shift-left, and occurs when
the sign bit is changed (sign reversal)

52

4-6 Shift Microoperations
Arithmetic Shifts cont

-1 < I 2 1 fo
Slé?tn Arithmetic Shift Right
? - rn-l < r3 r2 Tl rO
Sign

: Arithmetic Shift Left
Bit

4-6 Shift Microoperations
Arithmetic Shifts cont

* An overflow flip-flop V. can be used to
detect an arithmetic shift-left overflow

Vs = Rn-1 D Rn-2

R4 E y 1 > overflow
Ry * 10> no overflow

54

4-6 Shift Microoperations cont

« Example: Assume R1=11001110, then:

— Arithmetic shift right once : R1 = 11100111

— Arithmetic shift right twice : R1 = 11110011

— Arithmetic shift left once : R1 = 10011100
— Arithmetic shift left twice : R1 = 00111000
— Logical shift right once : R1 =01100111
— Logical shift left once . R1=10011100
— Circular shift right once : R1=01100111
— Circular shift leftonce : R1=10011101

55

4-6 Shift Microoperations
Hardware Implementation cont

* A possible choice for a shift unit would be
a bidirectional shift register with parallel
load (refer to Fig 2-9). Has drawbacks:

— Needs two pulses (the clock and the shift
signal pulse)

— Not efficient in a processor unit where multiple
number of registers share a common bus

* It Is more efficient to iImplement the shift
operation with a combinational circuit

56

4-6 Shift Microoperations
Hardware Implementation cont

Serial Input I Serial Input I,
A3A2A1AO
T T T Select
1 0 S 1 0 S 1 0 S 1 0 0 for shift right
1 for shift left
MUX MUX MUX MUX
Hs H, ‘ H; Ho

4-bit Combinational Circuit Shifter

4-7 Arithmetic Logic Shift Unit

* Instead of having individual registers performing the

microoperations directly, computer systems employ a
number of storage registers connected to a common
operational unit called an Arithmetic Logic Unit (ALU)

58

4-7 Arithmetic Logic Shift Unit cont

One stage of
ALU

Ci

l

One stage of Di
arithmetic
circuit (Fig.A)
Cint
One stage of Ei
logic circuit
(Fig.B)
shr
shl

Select

0 4x1
1 MUX

2
3

59

