
1

Register Transfer and Microoperations

Chapter 4

2

contents

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

3

4-1 Register Transfer Language (RTL)

• Digital System: An interconnection of hardware modules that do a
certain task on the information.

• Digital Module = Registers + Operations performed on the data stored
in it.

• Modules: Constructed from such digital components as registers,
decoders, and control logic.

• Modules are interconnected with common data and control paths to
form a digital computer system

4

4-1 Register Transfer Language cont.

• Microoperations: operations executed on data

stored in one or more registers.

• For any function of the computer, a sequence of

microoperations is used to describe it

• The result of the operation may be:

– replace the previous binary information of a

register or

– transferred to another register

5

4-1 Register Transfer Language cont.

• The internal hardware organization of a

digital computer is defined by specifying:
• The set of registers it contains and their function

• The sequence of microoperations performed on

the binary information stored in the registers

• The control that initiates the sequence of

microoperations

4-1 Register Transfer Language cont.

Digital Computer =

Registers + Microoperations Hardware + Control Functions

6

7

4-1 Register Transfer Language cont.

• Register Transfer Language (RTL) : a symbolic notation to

describe the microoperation transfers among registers

Next steps:

– Define symbols for various types of microoperations,

– Describe the hardware that implements these microoperations

8

4-2 Register Transfer (our first microoperation)

• Computer registers are designated by capital letters

(sometimes followed by numerals) to denote the function

of the register
• R1: processor register

• MAR: Memory Address Register (holds an address for a memory unit)

• PC: Program Counter

• IR: Instruction Register

• SR: Status Register

9

4-2 Register Transfer cont.

• The individual flip-flops in an n-bit register are numbered

in sequence from 0 to n-1 (from the right position toward

the left position)

R1 7 6 5 4 3 2 1 0

A block diagram of a register

Register R1 Showing individual bits

10

4-2 Register Transfer cont.

R2

Numbering of bits

Partitioned into two parts

15 0

PC(H) PC(L)

07815

Lower byteUpper byte

Other ways of drawing the block diagram of a register:

11

4-2 Register Transfer cont.

• Information transfer from one register to another is
described by a replacement operator: R2 ← R1

• This statement denotes a transfer of the content of
register R1 into register R2

• The transfer happens in one clock cycle

• The content of the R1 (source) does not change

• The content of the R2 (destination) will be lost and
replaced by the new data transferred from R1

12

4-2 Register Transfer cont.

• Conditional transfer occurs only under a
control condition

• Representation of a (conditional) transfer

If (P=1) then R2 ← R1

• A binary condition (P equals to 0 or 1)
determines when the transfer occurs

• The content of R1 is transferred into R2
only if P is 1

13

4-2 Register Transfer cont.

n

Clock

R1

R2
Control

Circuit
Load

t t+1

Clock

Load

Transfer occurs here

Synchronized

with the clock

P

Hardware implementation of a controlled transfer: P: R2 ← R1

Block diagram:

Timing diagram

14

4-2 Register Transfer cont.

Basic Symbols for Register Transfers

Symbol Description Examples

Letters &

numerals

Denotes a register MAR, R2

Parenthesis () Denotes a part of a

register

R2(0-7), R2(L)

Arrow ← Denotes transfer of

information

R2 ← R1

Comma , Separates two

microoperations

R2 ← R1, R1 ← R2

15

4-3 Bus and Memory Transfers
• Paths must be provided to transfer information

from one register to another

• A Common Bus System is a scheme for
transferring information between registers in a
multiple-register configuration

• A bus: set of common lines, one for each bit of a
register, through which binary information is
transferred one at a time

• Control signals determine which register is
selected by the bus during each particular
register transfer

16

4-3 Bus and Memory Transfers

3 2 1 0

Register D

D3 D2 D1 D0

3 2 1 0

Register C

C3 C2 C1 C0

3 2 1 0

Register B

B3 B2 B1 B0

3 2 1 0

Register A

A3 A2 A1 A0

D3 C3 B3 A3

S0

S1
MUX3

3 2 1 0

D2 C2 B2 A2

S0

S1
MUX2

3 2 1 0

D1 C1 B1 A1

S0

S1
MUX1

3 2 1 0

D0 C0 B0 A0

S0

S1MUX0

3 2 1 0

4-Line Common Bus

Register A Register B Register C Register D

Bus lines

4-3 Bus and Memory Transfers

• Bus selection : two selection lines S1 and S0 are

connected to the selection inputs of all four multiplexers.

17

S1 S0 Register selected

0 0 A

0 1 B

1 0 C

1 1 D

18

4-3 Bus and Memory Transfers
• The transfer of information from a bus into one of

many destination registers is done:
– By connecting the bus lines to the inputs of all destination

registers and then:

– activating the load control of the particular destination
register selected

BUS ←C , R1 ←BUS

• The content of register C is placed on the bus

• content of bus is loaded into register R1

• It is equivalent to: R1 ← C

19

4-3 Bus and Memory Transfers: Three-State

Bus Buffers

• A bus system can be constructed with three-state buffer

gates instead of multiplexers

• A three-state buffer is a digital circuit that exhibits three

states: logic-0, logic-1, and high-impedance (Hi-Z)

Control input C

Three-State Buffer

Normal input A Output B

20

4-3 Bus and Memory Transfers: Three-State

Bus Buffers cont.

A
C=1

B A B

A B A B

Buffer

Open Circuit

C=0

21

4-3 Bus and Memory Transfers: Three-State

Bus Buffers cont.

2×4

Decoder

Select

Enable

0

1

2

3

S1

S0

E

Bus line for bit 0
A0

B0

C0

D0

Bus line with three-state

buffer (replaces MUX0 in the

previous diagram)

22

4-3 Bus and Memory Transfers: Memory

Transfer
• Memory read : Transfer from memory

• Memory write : Transfer to memory

• Data being read or wrote is called a memory

word (called M)

• It is necessary to specify the address of M when

writing /reading memory

• This is done by enclosing the address in square

brackets following the letter M

• Example: M[0016] : the memory contents at

address 0x0016

23

4-3 Bus and Memory Transfers: Memory

Transfer cont.

• Assume that the address of a memory unit is stored in a

register called the Address Register AR

• Lets represent a Data Register with DR, then:

• Read: DR ← M[AR]

• Write: M[AR] ← DR

24

4-3 Bus and Memory Transfers: Memory

Transfer cont.

AR

x12
x0C

x0E

x10

x12

x14

x16

x18

19

34

45

66

0

13

22R1←M[AR]

R1

100

R1

66

RAM

R1

100

25

4-4 Arithmetic Microoperations

• The microoperations most often encountered in digital

computers are classified into four categories:

– Register transfer microoperations

– Arithmetic microoperations (on numeric data stored in the

registers)

– Logic microoperations (bit manipulations on non-numeric data)

– Shift microoperations

26

• The basic arithmetic microoperations are: addition,

subtraction, increment, decrement, and shift

• Addition Microoperation:

R3 ←R1+R2

• Subtraction Microoperation:

R3 ←R1-R2 or :

R3 ←R1+R2+1

4-4 Arithmetic Microoperations cont.

1’s complement

27

• One’s Complement Microoperation:

R2 ←R2

• Two’s Complement Microoperation:

R2 ←R2+1

• Increment Microoperation:

R2 ←R2+1

• Decrement Microoperation:

R2 ←R2-1

4-4 Arithmetic Microoperations cont.

4-4 Arithmetic Microoperations Binary

Adder
• To implement the add microoperation with hardware need

registers that hold the data and the digital component that
performs the arithmetic addition

• Full-adder: digital circuit that forms the arithmetic sum of
two bits and a previous carry

• Binary adder: full adder circuits connected in cascade.

• Binary adder subtractor: The addition and subtraction
operation can be combined into one common circuit by
including Xor gate

28

29

4-4 Arithmetic Microoperations Binary Adder-

Subtractor

FAFAFAFA
C0

A0B0

S0

A1B1

S1

A2B2

S2

A3B3

S3

C1C2C3

C4

4-bit adder-subtractor

M

30

• For unsigned numbers, this gives A – B if A≥B or

the 2’s complement of (B – A) if A < B

(example: 3 – 5 = -2= 1110)

• For signed numbers, the result is A – B provided

that there is no overflow. (example : -3 – 5= -8)
1101

1011 +
ـــــــــــــــــــــــــــ

1000

4-4 Arithmetic Microoperations Binary Adder-

Subtractor

C3

C4

V =
1, if overflow

0, if no overflow

Overflow detector for signed numbers

31

4-4 Arithmetic Microoperations Binary Adder-

Subtractor cont.

• What is the range of unsigned numbers that can be

represented in 4 bits?

• What is the range of signed numbers that can be

represented in 4 bits?

• Repeat for n-bit?!

32

4-4 Arithmetic Microoperations Binary

Incrementer

• Binary Incrementer can also be implemented using a

counter

• A binary decrementer can be implemented by adding 1111

to the desired register each time!

33

4-4 Arithmetic Microoperations Binary

Incrementer

C S

x y

HA

C S

x y

HA

C S

x y

HA

C S

x y

HA

S0S1S2S3C4

1A0A1A2A3

4-bit Binary Incrementer

34

4-4 Arithmetic Microoperations Arithmetic

Circuit

• This circuit performs seven distinct arithmetic operations

and the basic component of it is the parallel adder

• The output of the binary adder is calculated from the

following arithmetic sum:
• D = A + Y + Cin

35

B0

4-4 Arithmetic Microoperations Arithmetic

Circuit cont.

3 2 1 0 S1 S0

4×1 MUX

FAFAFAFA Cin

D0D1D2D3

C1C2C3

Cout

B01 0 S1 S0B1

3 2 1 0 S1 S0

4×1 MUX

B11 0 S1 S0B2

3 2 1 0 S1 S0

4×1 MUX

B21 0 S1 S0B3

3 2 1 0 S1 S0

4×1 MUX

B31 0 S1 S0

A0A1A2A3

4-bit Arithmetic Circuit

X0Y0X1Y1X2Y2X3Y3

Figure A

36

4-5 Logic Microoperations

The four basic microoperations

OR Microoperation

• Symbol: , +

• Gate:

• Example: 1001102  10101102 = 11101102

P+Q: R1←R2+R3, R4←R5 R6

OR
OR

ADD

37

4-5 Logic Microoperations

The four basic microoperations cont.

AND Microoperation

• Symbol: 

• Gate:

• Example: 1001102  10101102 = 00001102

38

4-5 Logic Microoperations

The four basic microoperations cont.

Complement (NOT) Microoperation

• Symbol:


• Gate:

• Example: 10101102 = 01010012

39

4-5 Logic Microoperations

The four basic microoperations cont.

XOR (Exclusive-OR) Microoperation

• Symbol: 

• Gate:

• Example: 1001102  10101102 = 11100002

40

4-5 Logic Microoperations

Other Logic Microoperations

Selective-set Operation

• Used to force selected bits of a register into logic-1 by

using the OR operation

• Example: 01002  10002 = 11002

In a processor register
Loaded into a register from

memory to perform the

selective-set operation

41

4-5 Logic Microoperations

Other Logic Microoperations cont.

Selective-complement (toggling) Operation

• Used to force selected bits of a register to be complemented by

using the XOR operation

• Example: 00012  10002 = 10012

In a processor register
Loaded into a register from

memory to perform the

selective-complement operation

42

4-5 Logic Microoperations

Other Logic Microoperations cont.

Insert Operation

• Step1: mask the desired bits

• Step2: OR them with the desired value

• Example: suppose R1 = 0110 1010, and we desire to replace the
leftmost 4 bits (0110) with 1001 then:

– Step1: 0110 1010  0000 1111

– Step2: 0000 1010  1001 0000

•  R1 = 1001 1010

43

4-5 Logic Microoperations

Other Logic Microoperations cont.

NAND Microoperation

• Symbols:  and


• Gate:

• Example: 1001102  10101102 = 11110012

44

4-5 Logic Microoperations

Other Logic Microoperations cont.

NOR Microoperation

• Symbols:  and


• Gate:

• Example: 1001102  10101102 = 00010012

45

4-5 Logic Microoperations

Other Logic Microoperations cont.

Set (Preset) Microoperation

• Force all bits into 1’s by ORing them with a value

in which all its bits are being assigned to logic-1

• Example: 1001102  1111112 = 1111112

Clear (Reset) Microoperation

• Force all bits into 0’s by ANDing them with a

value in which all its bits are being assigned to

logic-0

• Example: 1001102  0000002 = 0000002

46

4-5 Logic Microoperations

Hardware Implementation

• The hardware implementation of logic microoperations

requires that logic gates be inserted for each bit or pair of

bits in the registers to perform the required logic function

• Most computers use only four (AND, OR, XOR, and NOT)

from which all others can be derived.

47

4-5 Logic Microoperations

Hardware Implementation cont.

S1

S0

0

1

2

3

4×1

MUX

Ei

Ai

Bi

S1 S0 Output

Operatio

n

0 0 E = A  B XOR

0 1 E = A  B OR

1 0 E = A  B AND

1 1 E = A Complem

ent

This is for one bit i

Figure B

48

4-6 Shift Microoperations
• Used for serial transfer of data

• Also used in conjunction with arithmetic, logic,

and other data-processing operations

• The contents of the register can be shifted to the

left or to the right

• As being shifted, the first flip-flop receives its

binary information from the serial input

• Three types of shift: Logical, Circular, and

Arithmetic

49

4-6 Shift Microoperations cont.

r0r1r3rn-1

r0r1r2r3rn-1

Shift Right

Shift Left

Serial Input Serial Output

Serial Output Serial Input

Determines

the “shift”

type

r2

**Note that the bit ri is the bit at position (i) of the register

50

4-6 Shift Microoperations:

Logical Shifts

• Transfers 0 through the serial input

• Logical Shift Right: R1←shr R1

• Logical Shift Left: R2←shl R2

The same

The same

Logical Shift Left

? 0r0r1r2r3rn-1

51

4-6 Shift Microoperations:
Circular Shifts (Rotate Operation)

• Circulates the bits of the register around

the two ends without loss of information

• Circular Shift Right: R1←cir R1

• Circular Shift Left: R2←cil R2

The same

The same

Circular Shift Left

r0r1r2r3rn-1

52

4-6 Shift Microoperations

Arithmetic Shifts

• Shifts a signed binary number to the left or right

• An arithmetic shift-left multiplies a signed binary number by 2:

ashl (00100): 01000

• An arithmetic shift-right divides the number by 2

ashr (00100) : 00010

• An overflow may occur in arithmetic shift-left, and occurs when

the sign bit is changed (sign reversal)

53

4-6 Shift Microoperations

Arithmetic Shifts cont.

Arithmetic Shift Right
Sign

Bit

Arithmetic Shift Left
Sign

Bit

?

0?

r0r1r2r3rn-1

r0r1r2r3rn-1

54

4-6 Shift Microoperations

Arithmetic Shifts cont.

• An overflow flip-flop Vs can be used to

detect an arithmetic shift-left overflow

Vs = Rn-1  Rn-2

Rn-2

Vs=
Rn-1 1  overflow

0  no overflow

55

4-6 Shift Microoperations cont.

• Example: Assume R1=11001110, then:

– Arithmetic shift right once : R1 = 11100111

– Arithmetic shift right twice : R1 = 11110011

– Arithmetic shift left once : R1 = 10011100

– Arithmetic shift left twice : R1 = 00111000

– Logical shift right once : R1 = 01100111

– Logical shift left once : R1 = 10011100

– Circular shift right once : R1 = 01100111

– Circular shift left once : R1 = 10011101

56

4-6 Shift Microoperations

Hardware Implementation cont.

• A possible choice for a shift unit would be

a bidirectional shift register with parallel

load (refer to Fig 2-9). Has drawbacks:

– Needs two pulses (the clock and the shift

signal pulse)

– Not efficient in a processor unit where multiple

number of registers share a common bus

• It is more efficient to implement the shift

operation with a combinational circuit

57

4-6 Shift Microoperations

Hardware Implementation cont.

S 1 0 S 1 0 S 1 0 S 1 0

A3A2A1A0

Serial Input IR Serial Input IL

Select

0 for shift right

1 for shift left

H3 H2 H1 H0

MUX MUX MUX MUX

4-bit Combinational Circuit Shifter

58

4-7 Arithmetic Logic Shift Unit

• Instead of having individual registers performing the

microoperations directly, computer systems employ a

number of storage registers connected to a common

operational unit called an Arithmetic Logic Unit (ALU)

59

4-7 Arithmetic Logic Shift Unit cont.

0

1

2

3

S3

S2

S1

S0

Bi

Ai

Ai+1

Ai-1

Select

4×1

MUX

Ci

Ci+1

One stage of

arithmetic

circuit (Fig.A)

One stage of

logic circuit

(Fig.B)

Di

Ei

Fi

shr

shl

One stage of

ALU

